application
model grammar version 97
model | 106 | application |
---|---|---|
interface | 20 | interface |
auto-webclient | yar.11 | generator_settings |
generator_annotations | ||
phrases | ||
query | ||
translations | ||
parameters | ||
connector | 36.5 | processor |
variables | ||
datastore | 116 | consumed_interfaces_mapping |
provided_interface_implementation | ||
migration_mapping | ||
regular_expression_engine | ||
relational-database-bridge | 110 | database |
database_transformation | ||
sql-mirror | 116 | sql_mapping |
webclient | yar.11.0 | views |
widget | ||
client bindings | ||
gui_model | ||
phrases | ||
translations | ||
settings | ||
parameters | ||
default features | ||
main | ||
query | ||
project-build-environment | 41 | wiring |
deployment |
- The minimal model
- Data model structure
- Cardinality constraint
- References
- Derived values
- Permissions and Todos
- Commands and Timers
- Navigation
- User interface annotations
The minimal model
Every valid Alan model instantiates the root
rule.
From that rule we can extract a minimal model.
In the application
language, the minimal model is
users
anonymous
interfaces
root { }
numerical-types
Thus, every application
model defines users
for access control, interfaces
specifying operations and data from external systems, a root
type, and numerical-types
.
The next section explains the minimal model in more detail.
Data model structure
The root
rule
Application users
The language supports two classes of users: anonymous
users and dynamic
users.
Anonymous users do not require login; dynamic users do.
The keyword anonymous
enables anonymous
user access to your application.
If you do not plan to support anonymous users, you just leave it out: the 'no'
state for 'allow anonymous user'
is the default, requiring no code at all.
If your application supports a dynamic
collection of users, you can enable user sign-up and authentication.
Enabling user sign-up means that your application will have a sign-up page for new users.
User authentication can either be application-specific, or it can be done via a single application for single sign-on. For an application that handles user authentication, you need to specify:
- a collection that holds
Passwords
and some required properties, or - an
Authorities
collection listing third parties that handle authorization using the OAuth standard (Google, Microsoft, etc.). For application-specific user authentication, you need to specify which collection and text property holds (hashed) user passwords. In addition, you have to specify states for the ‘active’ and ‘reset’ status of the password.
The following model expresses an application that supports all aforementioned features:
- user sign-up, by providing a
user-initializer
- password authentication, by specifying a
Passwords
collection and required properties - third party authentication, by specifying an
Authorities
andIdentities
collection
users
dynamic: .'Users'
user-initializer: (
'Type' = create 'Unknown' ( )
)
passwords: .'Passwords'
password-value: .'Data'.'Password'
password-status: .'Data'.'Active'
active: 'Yes' ( )
reset: 'No' ( )
password-initializer: (
'Data' = ( )
)
authorities: .'Authorities'
identities: .'Identities'>'User'
identity-initializer: ( )
root {
can-update: user .'Type'?'Admin'
'Users': collection ['Name'] {
'Name': text
'Type': stategroup (
'Admin' { }
'Unknown' { }
)
}
'Passwords': collection ['User'] {
'User': text -> ^ .'Users'[]
'Data': group {
can-update: user is ( ^ >'User' )
'Password': text
'Active': stategroup (
'No' { }
'Yes' { }
)
}
}
'Authorities': collection ['Authority'] {
'Authority': text
'Identities': collection ['Identity'] {
'Identity': text
'User': text -> ^ ^ .'Users'[]
}
}
}
The initializers are for setting initial values for a user, password or identity node.
For example, the user-initializer
sets the Type
of users that sign up to Unknown
.
Thus, users cannot sign up as an Admin
; Admin
permissions are required to make a new user Admin
.
'allow anonymous user': [ users ] stategroup (
'no' { }
'yes' { [ anonymous ] }
)
'has dynamic users': stategroup (
'no' { }
'yes' {
'users collection path': [ dynamic: ] component 'descendant property path'
'supports user sign-up': stategroup (
'yes' {
'user initializer': [ user-initializer: ] component 'user initializer'
}
'no' { }
)
'has password authentication': stategroup (
'yes' {
'passwords collection path': [ passwords: ] component 'descendant property path'
'password text path': [ password-value: ] component 'descendant property path'
'password status': [ password-status: ] group {
'state group path': component 'descendant property path'
'active state': [ active: ] group {
'state': reference
'initializer': component 'command object expression'
}
'reset state': [ reset: ] group {
'state': reference
'initializer': component 'command object expression'
}
}
'password initializer': [ password-initializer: ] component 'password initializer'
}
'no' { }
)
'has external authentication': stategroup (
'yes' {
'authorities path': [ authorities: ] component 'descendant property path'
'identities path': [ identities: ] component 'descendant property path'
'user reference': [ > ] reference
'identity initializer': [ identity-initializer: ] component 'identity initializer'
}
'no' { }
)
}
)
Interfaces
If your application consumes data from external sources, you will have defined an Alan interface
.
In order to consume an interface
, you have to mention it in the interfaces
section.
This way, you can reference the interface
when configuring permissions.
The path
is for specifying on which node the interface
conformant data will be imported at runtime.
The node itself may only be modified via the interface: the value source has to be interface
.
You express that at the node type
with can-update: interface '<imported interfaces id>'
.
interfaces
'Supplier' = .'Supplier Data'
root {
'Supplier Data': group {
can-update: interface 'Supplier'
'Delivery Time': number 'days'
}
}
'imported interfaces': [ interfaces ] dictionary {
'path': [ = ] component 'descendant node path'
}
The root
node type
Alan models are hierarchical models specifying hierarchical data. An Alan model is a hierarchy of nested types with a single root type:
root { }
The root
type (short for node type) is a complex type that nests other (complex) types. Types are surrounded by
curly braces, and their identification is a path which starts from the root type. We refer to
an instance of a type as a node. The rule for defining a type carries the same name: node
; it should be read as the node type
rule,
as we define node types
in a model (for legacy reasons it is called the 'node'
rule).
'root': [ root ] component 'node'
Numerical types
Numbers in an application model require a numerical type. Also, computations with numbers of different numerical types require conversion rules. Divisions require a division conversion rule, products require a product conversion rule, and so on. Some examples of numerical types, with conversion rules are
'date' in 'days' @date
'date and time' in 'seconds' @date-time
'days'
'milliseconds'
= 'seconds' * 1 * 10 ^ 3 // rule for converting 'seconds' to milliseconds
@numerical-type: (
label: "sec"
decimals: 3
)
'minutes' @duration: minutes
'seconds'
= 'seconds' * 'factor' // 'seconds' times a 'factor' produces 'seconds'
= 'seconds' / 'factor'
= 'milliseconds' * 1 * 10 ^ -3
= 'minutes' * 60 * 10 ^ 0
@duration: seconds
'factor'
= 'factor' * 'factor'
= 'seconds' / 'seconds'
Annotations like @date
map numerical types to formats for easy modification in the GUI.
With @factor
you can present 1000 milliseconds as 1 second to the application user.
If you do so, be sure to set @label:
to "sec"
as well!
'numerical types': [ numerical-types ] dictionary {
'type': stategroup (
'relative' {
'timer resolution': stategroup (
'none' { }
'seconds' { [ : time-in-seconds ] }
)
'range type': [ in ] reference
}
'absolute' {
'product conversions': dictionary { [ = ]
'right': [ * ] reference
}
'division conversions': dictionary { [ = ]
'denominator': [ / ] reference
}
}
)
'singular conversions': dictionary { [ = ]
'type': stategroup (
'factor' {
'invert': stategroup (
'no' { [ * ] }
'yes' { [ / ] }
)
'factor': integer
'base': [ * ] integer
'exponent': [ ^ ] integer
}
'base' {
'offset': [ + ] integer
'base': [ * ] integer
'exponent': [ ^ ] integer
'unit conversion': stategroup (
'no' { }
'yes' {
'conversion rule': [ in ] reference
}
)
}
)
}
'ui': component 'ui numerical type'
}
Node types
Node types contain a permissions definition
for controlling read and update permissions,
a todo definition
to mark a node as a todo
-item,
and attributes
.
An attribute is of type property
, reference-set
, command
, or action
.
Property attributes
A property
specifies a part of the data structure.
Alan supports six different property types:
text
, file
, number
, collection
, stategroup
, and group
.
Text, file, and number are primitive property types. Text properties hold an unbounded
string value. File properties hold two unbounded string values: a file token and a file extension.
Number properties hold an integer value, with an optional positive
annotation to ensure values greater zero.
For ensuring that number values have a predefined accuracy, Alan does not support number values with a fractional component.
For expressing the accuracy of a number, number properties reference a numerical type
.
'Name' : text
'Price' : number 'euro'
'Release Date': number positive 'date and time'
A collection property holds a map of key-value pairs. Keys are text values that have
to be unique such that we can reference them unambiguously.
A key field has to be specified explicitly, after the keyword collection
; values are nodes of an inline defined type that specifies the key field:
Customers : collection ['Customer ID'] {
'Customer ID': text
... /* other attributes of this type */ ...
}
A state group property holds a value indicating a state. States are the alternatives to an aspect
that a state group property indicates. For example, red
, orange
, or green
for a color
property of a traffic light. The type of the property value corresponds to one out of multiple
predefined state types, such as simple
or assembled
:
'Product Type': stategroup (
'Simple' { ... /* attributes of this type */ ... }
'Assembled' { ... /* attributes of this type */ ... }
)
A group property groups related property values, which is useful for presentational purposes:
'Address': group {
'City': text
'State': text
'Zip Code': text
}
Derived values. Properties hold either base values or derived values (derivations). Derived values are computed from base values and other derived values. Application users cannot modify derived values. Properties holding derived values require an expression for computing their values at runtime:
'City': text // property holding a base value
'copy of City': text = .'City' // property with an expression for deriving its value
The derivations section provides the grammar for derivation expressions, detailing the different types of computations that the language supports.
Presentation options. The ui
component properties reference GUI annotation rules for tweaking and tuning the behaviour and presentation of properties in the generated GUI.
Some examples of GUI annotations are
@hidden
: hides a derived property from the UI.@description: "a description"
: describes the property in more detail to the user. Useful in combination with validation rules!@validate: "[a-b]+"
: sets a regex for text properties that defines what values are acceptable.@min:
and@max:
: limits number values.@identifying
: marks a property to always be displayed in addition to an collection entry’s key.@default: 'Assembled'
: specifies a default state for a state group property.@default: today|now
: sets date or date-time number value to the current time.@default: guid
: initializes a text property with a generated unique id string.@small
: displays (small) collections inline, and includes them when pressing ‘Duplicate’.@multi-line
: presents a multi-line text area for a text property.
Reference set attributes
A reference-set
is for creating bidirectional references.
A reference set attribute holds the inverse of a reference which is by default unidirectional.
References determine the values for reference sets; they create inverse references when your model specifies it.
Derivation expressions refer to them for computations (e.g. derived numbers).
Command attributes
A command
is a complex parametrized atomic operation on the dataset.
The application engine executes a command
in a single transaction.
A command
attribute specification consists of a definition of parameters
for the command and an implementation.
Action attributes
An action
is a sequence of operations that a webclient (GUI) executes.
That is, unlike a command
, an action can perform multiple different operations, interactively.
Actions provide users with wizards to guide them through their processes.
For an action
, you can specify parameters that users have to provide before starting the execution of the action.
After the parameters, you have specify which operations should be performed.
'node' { [ {, } ]
'permissions definition': component 'node permissions definition'
'todo definition': component 'todo definition'
'has attributes': stategroup = node-switch .'attributes' (
| nodes = 'yes' {
'first' = first
'last' = last
}
| none = 'no'
)
'attributes': dictionary {
'has predecessor': stategroup = node-switch predecessor (
| node = 'yes' { 'attribute' = predecessor }
| none = 'no'
)
'has successor': stategroup = node-switch successor (
| node = 'yes' { 'attribute' = successor }
| none = 'no'
)
'type': stategroup (
'reference set' { [ : reference-set ]
'referenced type path': group { [ -> ]
'direction': component 'direction annotation'
'head': component 'ancestor attribute path'
'root type': stategroup (
'simple' { }
'sibling' { [ sibling ] }
)
'tail': component 'plural descendant node path'
}
'value source': [ = ] stategroup (
'reference' {
'reference': [ inverse ] component 'entry reference selector'
}
'union branch' {
'branch': [ branch ] reference
}
)
}
'command' { [ : command ]
'type': stategroup (
'global' {
'ui': component 'ui command attribute'
}
'component' { [ component ] }
)
'permission definition': component 'command permission definition'
'parameters': component 'node'
'implementation': stategroup (
'external' { [ external ] }
'internal' {
'implementation': component 'command'
}
)
}
'action' { [ : action ]
'ui': component 'ui action attribute'
'parameters': component 'node'
'action': component 'ui action'
}
'property' { [ : ]
'type': stategroup (
'group' { [ group ]
'type': stategroup (
'base' { }
'derived' { [ = ] }
)
'ui': component 'ui group property'
'node': component 'node'
}
'collection' { [ collection ]
'key property': [ [, ] ] reference
'cardinality constraint': component 'lower bound cardinality constraint'
'type': stategroup (
'base' {
'graph constraints': component 'graph constraints definition'
}
'derived' { [ = ]
'recursion': component 'recursion annotation'
'key constraint': stategroup (
'no' {
'branches': [ flatten (, ) ] dictionary {
'expression': [ = ] component 'flatten expression'
'variable assignment': component 'optional named object assignment'
'node initializer': component 'node initializer'
}
'separator': [ join ] stategroup (
'dot' { [ . ] }
'dash' { [ - ] }
'colon' { [ : ] }
'greater than' { [ > ] }
'space' { [ space ] }
)
}
'yes' {
'expression': component 'plural reference expression'
}
)
}
)
'permissions': component 'item permissions definition'
'ui': component 'ui collection property'
'node': component 'node'
}
'number' { [ number ]
'set type': stategroup (
'integer' { }
'natural' { [ positive ] }
)
'numerical type': reference
'type': stategroup (
'base' {
'type': stategroup (
'causal' {
'type': stategroup (
'mutation' { [ = mutation-time ]
'watched property': [ . ] reference
}
'creation' { [ = creation-time ] }
'destruction' {
'destruction operation': stategroup (
'set to lifetime' { [ = life-time ] }
'add lifetime' { [ add life-time ] }
'subtract lifetime' { [ subtract life-time ] }
)
'watched stategroup': [ . ] reference
'watched state': [ ? ] reference
}
)
}
'simple' { }
)
}
'derived' { [ = ]
'value source': stategroup (
'parameter' { [ parameter ] }
'expression' {
'recursion': component 'recursion annotation'
'expression': component 'derivation expression'
}
)
}
)
'behaviour': stategroup (
'none' { }
'timer' { [ timer ontimeout ]
'implementation': component 'command'
}
)
'ui': component 'ui number property'
}
'file' { [ file ]
'type': stategroup (
'base' { }
'derived' { [ = ]
'value source': stategroup (
'parameter' { [ parameter ] }
'expression' {
'recursion': component 'recursion annotation'
'expression': component 'derivation expression'
}
)
}
)
'ui': component 'ui file property'
}
'text' { [ text ]
'has reference': stategroup (
'no' { }
'yes' {
'behaviour': component 'reference behaviour'
'direction': component 'direction annotation'
'recursion': component 'recursion annotation'
'expression': component 'entry reference definition'
'assignment': component 'optional named object assignment'
'rules': component 'where rules definition'
}
)
'type': stategroup (
'base' { }
'derived' { [ = ]
'value source': stategroup (
'parameter' { [ parameter ] }
'derived key' { [ key ] }
'expression' {
'recursion': component 'recursion annotation'
'expression': component 'derivation expression'
}
)
}
)
'ui': component 'ui text property'
}
'state group' { [ stategroup ]
'type': stategroup (
'base' { }
'derived' { [ = ]
'value source': stategroup (
'parameter' { [ parameter ] }
'expression' {
'recursion': component 'recursion annotation'
'expression': component 'derivation expression'
}
)
}
)
'ui': component 'ui state group property'
'first state': reference = first
'states': [ (, ) ] dictionary {
'has successor': stategroup = node-switch successor (
| node = 'yes' { 'successor' = successor }
| none = 'no'
)
'record lifetime': stategroup (
'yes' { [ life-time ]
'meta property': [ = . ] reference
'creation timestamp': [ from ] reference
}
'no' { }
)
'rules': component 'where rules definition'
'permissions': component 'item permissions definition'
'ui': component 'ui state'
'node': component 'node'
}
}
)
}
)
}
}
Cardinality constraint
Collections support a lower bound cardinality constraint, ensuring that a collection
is not empty.
This is useful for ensuring that you can always derive a reference to the source/sink of an ordered graph.
It also ensures that min
, max
, and similar computations on sets of number values do not require a fallback value.
'lower bound cardinality constraint' {
'constraint': stategroup (
'non empty' { [ non-empty ] }
'none' { }
)
}
References
References indicate relations between different parts of your application data.
For example, suppose that you have Orders
and Products
, where Orders
reference a Product
.
You can express that reference in your model, such that your users can see it, and such that you can use it in computations:
'Products': collection ['Name'] {
'Name': text
'In Stock': stategroup (
'No' { }
'Yes' { }
)
}
'Orders': collection ['ID'] {
'ID': text
'Product': text -> ^ .'Products'[] as $'p' // reference rule for text
where 'In Stock' -> $'p'.'In Stock'?'Yes' // additional reference rule for the text
'Ready': stategroup (
'No' { }
'Yes' { }
)
'Sent for Delivery': stategroup (
'No' { }
'Yes' where 'Order Ready' -> .'Ready'?'Yes' { } // reference rule for state
)
}
The example indicates that you can specify multiple references at a text property.
You can also specify additional rules for the ‘main’ reference with keyword $
, which refers to the referenced node.
In order for the text value to reference an item in a collection, its value has to equal the key value of an item in the specified collection
.
At runtime, reference expressions always produce a single specific node (or none at all, if the reference is broken).
The language ensures that.
In the GUI, references translate to a select list from which the application user has to choose an item.
Alternatively, sometimes a specific state for a state group is related to another node.
The where
-rule Order Ready
expresses that: an order can be Sent for Delivery
if and only if it is Ready
.
Reference behaviour
The reference behaviour that you specify, determines how the runtime treats a reference.
Mandatory references (specified with keyword ->
) are constraints that are enforced by the runtime: they have to resolve to a node.
Optional references (specified with keyword ~>
) do not have to resolve to a node.
'reference behaviour' {
'type': stategroup (
'mandatory' { [ -> ] }
'optional' { [ ~> ] }
)
}
The language ensures that references either point to a single specific node, or none at all. Thus, mandatory references unambiguously point to a single specific node. Because of that, derived value computations and command invocations can safely use them.
Optional references are especially useful when you want user data to reference imported data (can-update: interface '...'
).
Mandatory references are not allowed among data from different sources, such that data import is always successfull.
Upstream & downstream
Reference constraint expressions exist in two different flavours:
(1) upstream
reference expressions that use earlier defined attributes and (2)
downstream
reference expressions that use later defined attributes.
Downstream references require an explicit annotation: downstream
after the arrow (->
/~>
) specifying the reference behaviour.
'direction annotation' {
'direction': stategroup (
'upstream' { }
'downstream' { [ downstream ] }
)
}
'explicit graph traversal type' {
'traversal type': stategroup (
'base order' { }
'inverse order' { [ inverse ] }
)
}
'graph traversal selector' {
'ancestor path': component 'ancestor node path'
'traversal type': component 'explicit graph traversal type'
'graph': reference
'has tail': stategroup (
'no' { }
'yes' { [ ^ ]
'tail': component 'graph traversal selector'
}
)
}
'recursion annotation' {
'recursive graph traversal': stategroup (
'no' { }
'yes' { [ ( recurse, ) ]
'selector': component 'graph traversal selector'
}
)
}
Below we explain the annotation for sibling navigation
.
Bidirectional references
Text references are either unidirectional or bidirectional.
For bidirectional references, you specify a reference-set.
If a reference is downstream
reference, then the reference-set
holds upstream references.
Conversely, if a reference is upstream
, then the reference-set
holds downstream references:
'Products': collection ['Name'] {
'Name': text
// reference-set holding downstream references to Orders added by Product references,
'Orders': reference-set -> downstream ^ .'Orders'* = inverse >'Product'
}
'Orders': collection ['ID'] {
'ID': text
// a (bidirectional) upstream reference:
'Product': text -> ^ .'Products'[] -<'Orders'
}
The expression
^ .'Products'
is a navigation expression that produces exactly one collection at runtime. The Alan runtime interpretes such navigation expressions as follows: starting from theOrders
node, go to the parent node (as expressed by the navigation step^
); then select theProducts
collection found on that node. Thus, at runtime, navigation expressions are executed relative to the context node for which the expression should be evaluated.
Sibling references
If you want references from Products
to other Products
, you will find that this line gives an error:
`Other Product`: text -> ^ .'Products'[]
The compiler requires that you reference an earlier defined property, and not the Products
property that defines the expression.
For references from Products
to other other Products
, you need special sibling
references.
'entry reference definition' {
'type': stategroup (
'simple' {
'head': component 'context object step'
'collection path': [, [] ] component 'object path tail'
}
'sibling' {
'context': stategroup (
'operation' { [ @ ] }
'dataset' { }
)
'ancestor path': component 'ancestor node path'
'graph participation': [ sibling ] stategroup (
'no' {
'support self reference': stategroup (
'no' { }
'yes' { [ || self ] }
)
}
'yes' { [ in (, ) ]
'traversal type': component 'explicit graph traversal type'
'graph': reference
}
)
}
)
'tail': component 'descendant object path'
'inversion': stategroup (
'no' { }
'yes' { [ -< ]
'reference set': reference
}
)
}
'where rules definition' {
'rules': dictionary { [ where ]
'has predecessor': stategroup = node-switch predecessor (
| node = 'yes' { 'rule' = predecessor }
| none = 'no'
)
'behaviour': component 'reference behaviour'
'direction': component 'direction annotation'
'recursion': component 'recursion annotation'
'type': stategroup (
'entry reference' {
'expression': component 'entry reference definition'
}
'node reference' {
'context': stategroup (
'this' {
'head': component 'context object step'
}
'sibling rule' {
'rule': reference
}
)
'node path': component 'object path tail'
}
)
}
}
The following model expresses sibling references from Products
to other Products
which are corresponding (Parts
),
and also from Orders
to a Previous Order
:
'Products': collection ['Name']
'assembly': acyclic-graph
{
'Name': text
'Parts': collection ['Product'] {
// an 'upstream' sibling Product reference that partakes in the 'assembly' graph:
'Product': text -> ^ sibling in ('assembly')
'Part Price': number 'euro'
= ( recurse ^ 'assembly' ) >'Product' /*[1]*/ .'Product Price' /*[2a]*/
}
'Parts Cost': number 'euro' = sum .'Parts'* .'Part Price'
'Assembly Cost': number 'euro'
'Product Price': number 'euro'
= ( recurse 'assembly' ) sum ( .'Parts Cost', .'Assembly Cost' ) /*[2b]*/
}
'Orders': collection ['Year']
'timeline': ordered-graph .'Is First Order' ( ?'Yes'|| ?'No'>'Previous Order' )
{
'Year': text
'Price': number 'euro'
'Is First Order': stategroup (
'Yes' { }
'No' {
'Previous Order': text -> ^ sibling in ('timeline')
}
)
'Total Sales Value': number 'euro' = ( recurse 'timeline' ) switch .'Is First Order' (
|'Yes' => .'Price'
|'No' as $'no' => sum (
.'Price',
$'no'>'Previous Order'.'Total Sales Value' // recursion!
)
)
}
Graph constraints
The model above also expresses graph constraints.
Graph constraints ensure termination for recursive computations traversing a graph.
Graph constraints ensure that a set of references (edges) together form a graph satisfying a specific property.
For example, an acyclic-graph
constraint ensures that references that partake in the graph, form a directed acyclic graph.
For a detailed explanation, see AlanLight.
'graph constraints definition' {
'graphs': dictionary {
'type': [ : ] stategroup (
'acyclic' { [ acyclic-graph ] }
'ordered' { [ ordered-graph ]
'ordering property path': group {
'ordering state group path': component 'descendant property path'
'ordering states': [ (, ) ] group {
'sink state': [ ? ] reference
'edge state': [ || ? ] reference
'edge reference': [ > ] reference
}
}
}
)
}
}
The example model expresses that Products
form an acyclic assembly
graph via their Parts
:
Product
references of Parts
partake in the acyclic assembly
graph on Products
.
The constraint ensures that recursive Part Price
, Parts Cost
and Product Price
computations terminate.
For Orders
, the model expresses an ordered timeline
graph, which means that a strict total ordering exists for all Orders
.
That is: only one Orders
item does not have preceding Order
. All other Orders
do.
For ordered graphs, the application language supports deriving the source
and the sink
of the graph: the first Order
and the most recent Order
.
Note that the expression for computing a Part Price
starts with an annotation: ( recurse ^ 'assembly' )
.
That is because the Part Price
is computed recursively: for all recursive computations, the annotation is required.
The (hierarchy of) graph(s) that you have to name as part of the annotation, imply an order in which recursive computations can be evaluated.
If the annotation is missing, the compiler produces an error message indicating that a ‘cyclic dependency’ exists.
The existence of an order for evaluating recursion ensures that the recursive computations are finite.
A recursion annotation should be placed at a property or reference definition
- if the recursive expression for computing the value contains a sibling navigation step, like
>'Product'
[1] in the example. - if the property or reference (
'Product Price'
at [2b]) is referenced by another recursive expression after a sibling navigation step (>'Product'
at [2a]).
Note that when providing a recursion annotation, only sibling references that partake in the indicated graphs may be used. That is, when a computation depends on multiple sibling references partaking in different graphs, you need to split it up into separate computations (derivations). For computing the value that you need, you can combine the results from the separate computations.
Sometimes, computations traverse the inverse
of a graph (by using a reference-set
attribute).
For such computations, you need to add the annotation inverse
: ( recurse inverse 'assembly' )
.
Derived values
Derived values (derivations) are computed from base values and other derived values. The application language supports derived texts, numbers, files, states, references, and collections. Derived texts, numbers, files, states, and references share common grammar rules: the derivation expression rule and corresponding parts presented below. The language has special rules for deriving collections.
Recursion and cyclic dependencies
The application
language guarantees termination for derived value computations.
The solution for achieving this guarantee, rejects recursive computations by default (you will get a cyclic dependency error).
But, the application
does support recursion, including mutual recursion.
For recursive computations, you need to specify which (acyclic/ordered) graph the computation traverses,
such that termination is guaranteed, as shown in the sibling references example.
For that purpose, you need an annotation after the =
sign, and before the derivation expression itself: = ( recurse /* ^ path to graph ^*/ '<graph>' ) ...expression...
.
If you add the annotation to your expression, the expression can only refer to sibling references that partake in the specified graph '<graph>'
.
Note that the annotation enables you to specify a graph per level in the data hierarchy. That is, a single computation can traverse both a child and parent graph (and ancestor graphs higher up in the hierarchy). To ensure termination, you cannot traverse multiple graphs from the same collection, as multiple acyclic graphs may together form cycles.
Expressions
A derivation expression starts with optional switch
statements followed by a subexpression that produces a value.
The following code sample exemplifies the use of the different types of switch
statements, where each case produces a text value:
'Orders': collection ['Order'] {
'Order': text
'Price': number 'euro'
}
'Store Status': stategroup (
'Open' { }
'Closed' { }
)
/* state switch */
'Store Status Label': text = switch .'Store Status' (
|'Open' => "Open"
|'Closed' => "Closed"
)
/* node switch */
'Favorite Order': text ~> .'Orders'[]
'Favorite Order Exists?': text = switch >'Favorite Order' (
| none => "No"
| node => "Yes"
)
/* node set switch */
'How Many Orders?': text = switch .'Orders'* (
| none => "No Orders"
| node => "One Order"
| nodes => "More Than One Order"
)
/* number switch */
'Order Count': number 'count' = count .'Orders'*
'More Than 10 Orders?': text = switch .'Order Count' compare ( 10 ) (
| > => "More than 10"
| < => "Less than 10"
| == => "Exactly 10"
)
'derivation expression' {
'type': stategroup (
'produce value' {
'expression': component 'derivation expression tail'
}
'state switch' { [ switch ]
'state group path': component 'singular variablized object path'
'states': [ (, ) ] dictionary { [ | ]
'variable assignment': component 'optional named object assignment'
'expression': [ => ] component 'derivation expression'
}
}
'node switch' { [ switch ]
'node path': component 'variablized object path'
'operation': stategroup (
'equality' {
'other node path': [ is (, ) ] component 'singular variablized object path'
}
'existence' { }
)
'cases': [ (, ) ] group { dynamic-order
'node': group { [ | node ]
'variable assignment': component 'optional named object assignment'
'expression': [ => ] component 'derivation expression'
}
'none': [ | none => ] component 'derivation expression'
}
}
'set switch' { [ switch ]
'nodes path': component 'object set path'
'cases': [ (, ) ] group { dynamic-order
'match none': stategroup (
'no' { }
'yes' { [ | none => ]
'expression': component 'derivation expression'
}
)
'match node': stategroup (
'no' { }
'yes' { [ | node ]
'variable assignment': component 'optional named object assignment'
'expression': [ => ] component 'derivation expression'
}
)
'match nodes': stategroup (
'no' { }
'yes' { [ | nodes ]
'variable assignment': component 'optional named object assignment'
'expression': [ => ] component 'derivation expression'
}
)
}
}
'number switch' { [ switch ]
'number path': component 'singular variablized object path'
'compare to': [ compare (, ) ] stategroup (
'constant' {
'value': component 'constant number value'
}
'path' {
'right number path': component 'singular variablized object path'
}
)
'last case': reference = last
'cases': [ (, ) ] dictionary (
static 'equals' [ == ]
static 'less than or greater than' [ <> ]
static 'greater than' [ > ]
static 'greater than or equals' [ >= ]
static 'less than' [ < ]
static 'less than or equals' [ <= ]
) { [ | ]
'has predecessor': stategroup = node-switch predecessor (
| node = 'yes' { 'case' = predecessor }
| none = 'no'
)
'variable assignment': component 'optional named object assignment'
'expression': [ => ] component 'derivation expression'
}
}
)
}
'derivation expression list' {
'head': component 'derivation expression tail'
'has tail': stategroup (
'no' { }
'yes' { [ , ]
'tail': component 'derivation expression list'
}
)
}
'derivation expression tail' {
'type': stategroup (
'reference' {
'type': stategroup (
'branch' // branch of derived collection constructed using flatten expressions
{
'branch': [ branch ] reference
'expression': [ [, ] ] component 'singular variablized object path'
}
'ordered graph node' {
'type': stategroup (
'source' { [ source-of ] }
'sink' { [ sink-of ] }
)
'collection path': component 'object set path'
'ordered graph': [ in ] reference
}
)
}
'text' {
'type': stategroup (
'static' {
'value': text
}
'concatenation' { [ concat (, ) ]
'expression': component 'derivation expression list'
}
)
}
'number' {
'expression': component 'number expression'
}
'state' {
'initializer': component 'state initializer'
}
'dynamic' {
'path': component 'singular variablized object path'
}
)
}
Derived texts
A derived text value can consist of static text values and text values from other properties:
'Address': group {
'Street' : text // e.g. "Huntington Rd"
'Street number': text // e.g. "12B"
}
// label for an external billing system, like "Huntington Rd 12B":
'Address label': text = concat ( .'Address'.'Street', " ", .'Address'.'Street number' )
Derived numbers
Examples of derived number properties, including required conversion rules:
root {
'Tax Percentage': number positive 'percent'
'Products': collection ['Name'] {
'Name': text
'Price': number 'eurocent'
'Price (euro)': number 'euro' = from 'eurocent' .'Price'
'Order Unit Quantity': number positive 'items'
'Orders': reference-set -> downstream ^ .'Orders'* = inverse >'Product'
'Sales Value': number 'eurocent' = sum <'Orders'* .'Price'
'Items Sold': number 'items' = count <'Orders'*
}
'Total Sales Value': number 'eurocent' = sum .'Products'* .'Sales Value'
'Number of Products': number 'items' = count .'Products'*
'Orders': collection ['ID'] {
'ID': text
'Product': text -> ^ .'Products'[] -<'Orders'
'Quantity': number positive 'items'
'Loss': number 'items' = remainder (
.'Quantity',
>'Product' .'Order Unit Quantity'
)
'Price': number 'eurocent' = product (
>'Product'.'Price' as 'eurocent',
.'Quantity'
)
'Order Units': number positive 'units' = division ceil (
.'Quantity' as 'items' ,
>'Product'.'Order Unit Quantity'
)
'Tax': number 'eurocent'
'Gross Price': number 'eurocent' = sum ( .'Price', .'Tax' )
'Creation Time': number 'date and time'
'Estimated Lead Time': number 'seconds'
'Estimated Delivery Time': number 'date and time' = add (
.'Creation Time',
.'Estimated Lead Time' )
'Delivered': stategroup (
'No' { }
'Yes' {
'Delivery Time': number positive 'date and time'
'Lead Time': number 'seconds' = diff 'date and time' (
.'Delivery Time',
^ .'Creation Time'
)
}
)
}
'Gross Income': number 'eurocent' = sum .'Orders'* .'Gross Price'
}
numerical-types
'percent'
'euro'
= 'eurocent' * 1 * 10 ^ -2
'eurocent'
= 'eurocent' * 'items'
'units'
= 'items' / 'items'
'items'
'date and time' in 'seconds'
'seconds'
'number expression' {
'type': stategroup (
'unary' {
'type': stategroup (
'constant' {
'value': component 'constant number value'
}
'numerical type conversion' {
'conversion': [ from ] reference
'expression': component 'derivation expression tail'
}
'sign inversion' { [ - ]
'expression': component 'derivation expression tail'
}
)
}
'aggregate' {
'type': stategroup (
'collection operation' {
'type': stategroup (
'property' {
'operation': stategroup (
'minimum' { [ min ] }
'maximum' { [ max ] }
'sum' { [ sum ] }
'standard deviation' { [ std ] }
)
'numbers path': component 'object set path'
}
'count' { [ count ]
'nodes path': component 'object set path'
}
)
}
'remainder' { [ remainder (, ) ]
'numerator': component 'unary number expression'
'denominator': [ , ] component 'unary number expression'
}
'division' { [ division ]
'rounding': stategroup (
'ordinary' { }
'ceil' { [ ceil ] }
'floor' { [ floor ] }
)
'expressions': [ (, ) ] group {
'numerator': component 'unary number expression'
'conversion rule': [ as ] reference
'denominator': [ , ] component 'unary number expression'
}
}
'product' { [ product (, ) ]
'left': component 'unary number expression'
'conversion rule': [ as ] reference
'right': [ , ] component 'unary number expression'
}
'list operation' {
'operation': stategroup (
'sum' { [ sum ] }
'maximum' { [ max ] }
'minimum' { [ min ] }
)
'numbers': [ (, ) ] component 'derivation expression list'
}
'addition' { [ add (, ) ]
'left': component 'unary number expression'
'right': [ , ] component 'unary number expression'
}
'difference' { [ diff ]
'relative numerical type': reference
'expressions': [ (, ) ] group {
'left': component 'unary number expression'
'right': [ , ] component 'unary number expression'
}
}
)
}
)
}
'unary number expression' {
'expression': component 'derivation expression tail'
}
'constant number value' {
'value': integer
}
Derived files
Derived file
values take their value (token + extension) from another file
value.
For example, you can derive a Contract
which is a Default Contract
in case of a Standard
Agreement
, and a Custom
Contract
in case of a Custom
Agreement
:
'Standard Contract': file
'Agreement': stategroup (
'Standard' { }
'Custom' {
'Contract': file
}
)
'Contract': file = switch .'Agreement' (
|'Standard' => .'Standard Contract'
|'Custom' as $'con' => $'con'.'Contract'
)
Derived states
Derived states are computed using the abovementioned switch
expressions, where different cases lead to different states.
For example, we can derive if a Product
exists in a Catalog
of Products
from a Catalog Provider
.
For this purpose, we check if the optional Product
reference on an Order
produces a node or nothing:
'Catalog': group { can-update: interface 'Catalog Provider'
'Products': collection ['Name'] {
'Name': text
'Price': number 'eurocent'
'Description': text
}
}
'Orders': collection ['ID'] {
'ID': text
'Product': text ~> ^ .'Catalog'.'Products'[]
'Product found': stategroup = switch >'Product' (
| node as $ => 'Yes' where 'Found Product' = $ ( 'Price' = $ .'Price' )
| none => 'No' ( )
) (
'Yes' where 'Found Product' -> >'Product' {
'Description': text = .&'Found Product'.'Description'
'Price': number 'eurocent' = parameter
}
'No' { }
)
}
The expression for deriving a state, has to satisfy all where
rules for the state.
In the example, the where
rule expresses that the optional Product
reference is no longer optional.
Instead, the reference is mandatory in context of the Yes
state. The expression ‘proves’ that.
You can use the Found Product
for deriving values such as Description
on the state node.
An expression for deriving a state can express how to initialize property values of the state as well, such as Price
in the example.
To make this work, you have to specify = parameter
for properties that you want to set with the state initializer.
This language construct is especially useful when a reference to a node like 'Found Product'
is not available.
Furthermore, it useful for special operations such as source-of
and sink-of
, which we discuss below.
'state initializer' {
'state': reference
'rule arguments': dictionary { [ where ]
'expression': [ = ] component 'derivation expression'
}
'node initializer': component 'node initializer'
}
'node initializer' {
'arguments': [ (, ) ] dictionary {
'expression': [ = ] component 'derivation expression'
}
}
Derived references
Sometimes it is useful to derive a reference to a collection entry for use by the application user and other computations.
Similar to base references, derived references require you to express a text property follow by a reference definition.
For deriving a reference, you have to provide an expression that produces a node that matches the reference definition.
The definition of 'Product copy'
depicts that:
'Products': collection ['Name'] {
'Name': text
}
'Orders': collection ['Year']
'timeline': ordered-graph .'Is First Order' ( ?'Yes'|| ?'No'>'Previous Order' )
{
'Year': text
'Product': text -> ^ .'Products'[]
'Product copy': text -> ^ .'Products'[] = >'Product' /* derived reference */
'Is First Order': stategroup (
'Yes' { }
'No' {
'Previous Order': text -> ^ sibling in ('timeline')
}
)
}
/* source-of/sink-of of graph */
'Has Orders': stategroup = switch .'Orders'* (
| nodes as $ => 'Yes' (
'Oldest Order' = sink-of $ * in 'timeline'
'Most Recent Order' = source-of $ * in 'timeline'
)
| none => 'No' ( )
) (
'Yes' {
'Oldest Order' : text -> ^ .'Orders'[] = parameter /* derived reference */
'Most Recent Order': text -> ^ .'Orders'[] = parameter /* derived reference */
}
'No' { }
)
With the special source-of
and sink-of
operation, you can derive a reference to the respective nodes in an ordered graph.
These operations can only be applied to a collection for which we can guarantee non-emptiness, as otherwise the source/sink do not exist.
Therefore, we first switch
on the content of the 'Orders'
collection.
If it holds nodes
(meaning that it is not empty), then we can apply the source-of
and sink-of
operations.
Derived collections
'flatten expression' {
'head': component 'group ancestor node path'
'path': component 'plural descendant node path'
}
'plural reference expression' {
'type': stategroup (
'augment' {
'collection path': component 'singular variablized object path'
'filter path': [ * ] component 'descendant object path'
}
'union' { [ union ]
'branches': [ (, ) ] dictionary {
'has predecessor': stategroup = node-switch predecessor (
| node = 'yes' { }
| none = 'no'
)
'has successor': stategroup = node-switch successor (
| node = 'yes' { }
| none = 'no'
)
'expression': [ = ] component 'flatten expression'
'dependency': component 'dependency step'
'inversion': stategroup (
'no' { }
'yes' {
'reference set': [ -< ] reference
}
)
}
/* The 'first branch' is computed by the compiler.
** For recursive union computations, the first branch may not require recursion,
** and should ensure the required cardinality corresponding to the cardinality constraint (one for non-empty). */
'first branch': reference = first
}
)
}
'plural descendant node path' {
'has steps': stategroup (
'no' { }
'yes' {
'property': component 'property step'
'value type': stategroup (
'choice' {
'state': [ ? ] reference
}
'node' { }
'collection' { [ * ] }
)
'tail': component 'plural descendant node path'
}
)
}
Permissions and Todos
The application language supports expression permission and todo requirements down to the level of a single specific user
or interface
.
At the node type
level you can specify permissions for nodes: read and update permissions.
In addition, you can express that a node creates a todo-item in a todo-list of your application.
At collection properties and states, you can specify item permissions: create and delete permissions for collection entries and states.
At command attributes you can express permission requirements for executing a command.
'node permissions definition' { dynamic-order
'read permission': stategroup (
'inherited' { }
'explicit' { [ can-read: ]
'permission': component 'permission'
}
)
'update permission': stategroup (
'inherited' { }
'explicit' { [ can-update: ]
'permission': component 'permission'
}
)
}
'item permissions definition' { dynamic-order
'create permission': stategroup (
'inherited' { }
'explicit' { [ can-create: ]
'permission': component 'permission'
}
)
'delete permission': stategroup (
'inherited' { }
'explicit' { [ can-delete: ]
'permission': component 'permission'
}
)
}
'permission' {
'source': stategroup (
'user' {
'requirement': component 'user requirement'
}
'imported interface' {
'interface': [ interface ] reference
}
)
}
Permissions
When read permissions and update permissions are not specified at the root node type, all application users can read and update all application data.
Thus, if your applications supports anonymous
users, anyone with your application’s url can access all application data.
To restrict access to your application data, you can start by specifying some permissions at the root node type.
The line can-read: user
at the root
expresses that only users with a user account (in the Users
collection), have access to application data:
root {
can-read: user
can-update: user .'Type'?'Admin'
'Users': collection ['ID']
can-create: user .'Type'?'Admin'
can-delete: user .'Type'?'Admin'
{
can-read: user is ( /*this*/ ) || user .'Type'?'Admin'
can-update: user .'Type'?'Admin' // NOTE: unneeded
'ID': text
'Address': group { can-update: ^ is ( user )
'Street': text
'City': text
}
'Type': stategroup (
'Admin' { }
'Employee' { }
'Unknown' { has-todo: user .'Type'?'Admin' }
)
}
// only team members can read team information:
'Teams': collection ['Name'] { can-read: .'Members' [ user .'ID' ]
'Name': text
'Members': collection ['Member'] {
'Member': text ~> ^ ^ .'Users'[]
}
'Description': text
}
}
Node types inherit read and update permission requirements from their ancestor node types.
That is, if you specify required permissions at the root
node type, you do not have to repeat it a child node type.
The child node type takes the permission requirements from the root
node type.
Read permissions
Read permission requirements are cumulative.
That is, in order to read a node, a user requires read permission for all ancestors nodes of that node as well.
For example, in order to read a Members
node specified above,
a user needs permissions for the ancestor Teams
-node, as well as the root
node.
Update permissions
Update permission requirements are not cumulative.
Instead, update permissions for child nodes override permission requirements for parent nodes.
For example, for updates to the root node, we can require an admin: user .'Type'?'Admin'
.
If we were to omit other permission requirements, only admins would be able to update application data because of inheritance.
But, because of can-update: ^ is ( user )
at Address
in the model, users can (only!) update their own Address
information.
NOTE: for updating a node, users have to be able to read ancestor nodes!
Create and delete permissions
Create and delete permission requirements for collection entries and states (items) inherit update permission requirements from the parent node type. The permissions are one-off overrides that are not carried down in the node type hierarchy. That is, they only apply to the state type or collection attribute where they are specified.
Command execution permissions
Command execution permissions are independent of aforementioned permissions. Execution permission requirements only apply to the command for which they are specified. If a command A calls another command B, then required permissions for B are not checked. That is, the application only verifies that the user is permitted to execute command A.
NOTE: for executing a command, the command has to be reachable, meaning that users need read access for the node on which they want to execute the command!
'command permission definition' {
'execute permission': stategroup (
'reachable' { }
'explicit' { [ can-execute: ]
'requirement': component 'user requirement'
}
)
}
Todo items
Todo items are shown in a special section of your generated application.
The list of todo items is constructed from nodes that are marked as todos.
You express that in your model with has-todo:
followed by an expression that specifies to which users the todo item applies.
'todo definition' {
'todo': stategroup (
'no' { }
'yes' { [ has-todo: ]
'requirement': component 'user requirement'
'ui': component 'ui todo'
}
)
}
User requirements
For user requirements you can depend on your application data via complex expressions that traverse your model.
With the ||
keyword, you specify alternatives.
With a where
clause, you specify requirements on top of requirements (‘and’).
'user requirement' {
'expression': component 'node expression'
'has filter': stategroup (
'no' { }
'yes' {
'assignment': component 'optional variable assignment'
'path': [ where (, ) ] component 'user requirement'
}
)
'has alternative': stategroup (
'no' { }
'yes' { [ || ]
'alternative': component 'user requirement'
}
)
}
Commands and Timers
Commands enable external systems to perform operations via an Alan interface
on application
data.
Furthermore, commands can perform operations on other systems that other systems provide via an Alan interface
.
For this to work, interfaces have to be listed in the interfaces
section of an application
model.
Also, the external
command needs to be consumed by the application model, like the Place Order
command in the example:
'Products': collection ['Name'] {
'Name': text
}
'Place Order': command { 'Product': text -> .'Products'[] } external
'Orders': collection ['ID'] {
'ID': text
'Product': text -> ^ .'Products'[]
'Creation Time': number 'date and time' = creation-time
'Status': stategroup (
'New' {
'Order from Manufacturer': command { }
=> execute .'Place Order' ( 'Product' = ^ .'Product' )
=> update ^ (
'Status' = create 'Waiting for Manufacturer' ( )
)
}
'Delivered' { }
'Delayed' { }
'Waiting for Manufacturer' {
'Agreed Upon Delivery Time': number 'date and time'
timer ontimeout => update ^ (
'Status' = ensure 'Delayed' ( )
)
}
)
}
// for external system 'Delivery Service':
'Register Delivery': command { 'Order': text -> .'Orders'[] }
update @ >'Order' (
'Status' = create 'Delivered' ( )
)
'command object expression' {
'properties': [ (, ) ] dictionary {
'expression': [ = ] component 'command expression'
}
}
'command object initialization behaviour' {
'behaviour': stategroup (
'ensure existence' { [ ensure ] }
'fail when exists' { [ create ] }
)
}
'command expression' {
'operation': stategroup (
'state switch' { [ switch ]
'path': group {
'path': component 'singular node path'
'stategroup': [ . ] reference
}
'states': [ (, ) ] dictionary { [ | ]
'variable assignment': component 'optional variable assignment'
'expression': [ => ] component 'command expression'
}
}
'node switch' { [ switch ]
'expression': component 'node expression'
'cases': [ (, ) ] group { dynamic-order
'node case': [ | node ] group {
'variable assignment': component 'optional variable assignment'
'expression': [ => ] component 'command expression'
}
'none case': [ | none ] group {
'expression': [ => ] component 'command expression'
}
}
}
'walk' { [ walk ]
'path': component 'singular node path'
'type': stategroup (
'collection' {
'collection': [ . ] reference
}
'reference set' {
'reference set': [ < ] reference
}
)
'has tail': stategroup (
'no' { }
'yes' { [ where ]
'tail': component 'node path tail'
}
)
'variable assignment': component 'optional variable assignment'
'expression': [ (, ) ] component 'command expression'
}
'ignore' { [ ignore ] }
'update properties' { [ update ]
'path': component 'singular node path'
'target': stategroup (
'node' {
'expression': component 'command object expression'
}
'property' {
'property': [ . ] reference
'expression': [ = ] component 'command expression'
}
)
}
'execute operation' { [ execute ]
'path': component 'singular node path'
'command': [ . ] reference
'expression': component 'command object expression'
}
'produce value' {
'value': stategroup (
'object' {
'expression': component 'command object expression'
}
'state' {
'behaviour': component 'command object initialization behaviour'
'state': reference
'expression': component 'command object expression'
}
'scalar' {
'expression': component 'scalar expression'
}
'empty collection' { [ empty ] }
'current value' { [ current || ]
'expression': component 'command expression'
}
)
}
'entry' {
'type': stategroup (
'create' {
'behaviour': component 'command object initialization behaviour'
'expression': component 'command object expression'
}
'delete' { [ delete ]
'path': component 'singular node path'
}
)
}
)
}
'command' { [ => ]
'expression': component 'command expression'
'has next command': stategroup (
'yes' {
'command': component 'command'
}
'no' { }
)
}
'user initializer' {
'initializer': component 'command object expression'
}
'password initializer' {
'initializer': component 'command object expression'
}
'identity initializer' {
'initializer': component 'command object expression'
}
'scalar expression list' {
'head': component 'scalar expression'
'has tail': stategroup (
'no' { }
'yes' { [ , ]
'tail': component 'scalar expression list'
}
)
}
'scalar expression' {
'type': stategroup (
'number' {
'type': stategroup (
'constant' {
'value': component 'constant number value'
}
'now in seconds' { [ now ] }
'unary expression' {
'type': stategroup (
'absolute value' { [ abs ] }
'numerical type conversion' {
'conversion': [ from ] reference
}
'sign inversion' { [ - ] }
)
'expression': component 'scalar expression'
}
'list expression' {
'operation': stategroup (
'sum' { [ sum ] }
'minimum' { [ min ] }
'maximum' { [ max ] }
'product' { [ product ] }
)
'expression': [ (, ) ] component 'scalar expression list'
}
'binary expression' {
'operation': stategroup (
'division' { [ division ]
'rounding': stategroup (
'ordinary' { }
'ceil' { [ ceil ] }
'floor' { [ floor ] }
)
}
'remainder' { [ remainder ] }
)
'expressions': group { [ (, ) ]
'left': component 'scalar expression'
'right': [ , ] component 'scalar expression'
}
}
)
}
'text' {
'type': stategroup (
'static' {
'value': text
}
)
}
'dynamic' {
'path': component 'singular node path'
'property': [ . ] reference
}
)
}
Navigation
Navigation steps:
.'My Property' // get property value
?'My State' // require state
>'My Text' // get referenced node (for text properties with a reference)
.'My Text'&'Where' // get 'where'-rule value from property
.&'My State Where' // get 'where'-rule result from context state
.'My Collection'* // iterate collection
--
^ // go to parent node
$^ // go to parent context with $ object
$ // select nearest $ object
@ // select nearest parameter node
Node navigation
'ancestor node path' {
'has steps': stategroup (
'no' { }
'yes' { [ ^ ]
'tail': component 'ancestor node path'
}
)
}
'context node path' {
'context': stategroup (
'dynamic user' { [ user ] }
'this' { }
'variable' {
'name': stategroup (
'implicit' { [ $ ] }
'explicit' {
'head': component 'ancestor variable path'
'variable': [ $ ] reference
}
)
}
'parameter' { [ @ ] }
)
}
'node step' {
'type': stategroup (
'parent' { [ ^ ] }
'property rule' {
'text': [ . ] reference
'rule': [ & ] reference
}
'group' { [ . ]
'group': reference
}
'state context rule' {
'rule': [ .& ] reference
}
'state' {
'state group': [ . ] reference
'state': [ ? ] reference
}
'reference' { [ > ]
'text': reference
}
)
}
'node path tail' {
'has steps': stategroup (
'no' { }
'yes' {
'step': component 'node step'
'tail': component 'node path tail'
}
)
}
'node path' {
'head': component 'context node path'
'tail': component 'node path tail'
}
'singular node path' {
'path': component 'node path'
}
'conditional node path' {
'path': component 'node path'
}
'descendant node path' {
'has steps': stategroup (
'no' { }
'yes' {
'property': [ . ] reference
'value type': stategroup (
'choice' {
'state': [ ? ] reference
}
'node' { }
)
'tail': component 'descendant node path'
}
)
}
'descendant property path' {
'head': component 'descendant node path'
'property': [ . ] reference
}
'node expression' {
'node path': component 'conditional node path'
'type': stategroup (
'equality' {
'expected node path': [ is (, ) ] component 'conditional node path'
}
'existence' { }
'containment' {
'collection': [ . ] reference
'key path': [ [, ] ] group {
'path': component 'conditional node path'
'text': [ . ] reference
}
}
)
}
Variable assignment and navigation
'optional variable assignment' {
'has assignment': stategroup (
'no' { }
'yes' { [ as ]
'assignment': component 'variable assignment'
}
)
}
'variable assignment' {
'name': stategroup (
'implicit' { [ $ ] }
'explicit' {
'name': reference = first
'named objects': dictionary { [ $ ]
'has successor': stategroup = node-switch successor (
| node = 'yes' { }
| none = 'no'
)
}
}
)
}
'named object assignment' {
'name': stategroup (
'implicit' { [ $ ] }
'explicit' {
'name': reference = first
'named objects': dictionary { [ $ ]
'has successor': stategroup = node-switch successor (
| node = 'yes' { }
| none = 'no'
)
}
}
)
}
'optional named object assignment' {
'has assignment': stategroup (
'no' { }
'yes' { [ as ]
'assignment': component 'named object assignment'
}
)
}
'ancestor named object path' {
'has steps': stategroup (
'no' { }
'yes' { [ $^ ]
'tail': component 'ancestor named object path'
}
)
}
'ancestor variable path' {
'has steps': stategroup (
'no' { }
'yes' { [ $^ ]
'tail': component 'ancestor variable path'
}
)
}
Navigation for constraints & derivations
'singular variablized object path' {
'path': component 'variablized object path'
}
'named object step' {
'name': stategroup (
'implicit' { [ $ ] }
'explicit' {
'head': component 'ancestor named object path'
'named object': [ $ ] reference
}
)
}
'context object step' {
'context': stategroup (
'this' { }
'parameter' { [ @ ] }
'variable' {
'step': component 'named object step'
}
)
}
'variablized object path' {
'head': component 'context object step'
'path': component 'object path tail'
}
'group ancestor node path' {
'has steps': stategroup (
'no' { }
'yes' { [ ^ ]
'tail': component 'group ancestor node path'
}
)
}
'ancestor attribute path' {
'has steps': stategroup (
'no' { }
'yes' { [ ^ ]
'tail': component 'ancestor attribute path'
}
)
}
'property step' {
'property': [ . ] reference
}
'where rule step' {
'rule': reference
}
'dependency step' {
'type': stategroup (
'reference' {
'reference': [ > ] reference
}
'reference rule' {
'property': component 'property step'
'rule': [ & ] component 'where rule step'
}
'state context rule' {
'rule': [ .& ] component 'where rule step'
}
)
}
'object path tail' {
'has steps': stategroup (
'no' { }
'yes' {
'type': stategroup (
'parent' { [ ^ ] }
'property value' {
'property': component 'property step'
}
'dependency' {
'dependency': component 'dependency step'
}
'reference set' {
'reference set': [ < ] reference
}
'state' {
'state': [ ? ] reference
}
)
'tail': component 'object path tail'
}
)
}
'descendant object path' {
'path': component 'object path tail'
}
'object set path' {
'collection path': component 'singular variablized object path'
'value path': [ * ] component 'object path tail'
}
'entry reference selector' {
'definer': stategroup (
'property' {
'property': [ > ] reference
}
'rule' {
'property': [ . ] reference
'rule': [ & ] reference
}
)
}
User interface annotations
User interface annotations, or annotations for short, are recognizable by the
@
character before the keyword. E.g. @default:
. Most annotations
affect generated user interfaces (a system of type auto-webclient
); they typically
do not affect custom user interfaces (system type webclient
).
It is possible to use multiple annotations on a single property. Be aware that they should be added in a specific order. Consult this grammar for the order of annotations.
Overview
Different attribute types support the same types of annotations. This overview presents the commonly used annotations that different attribute types share.
Defaults
Most property types support the @default:
annotation. Defaults apply default values to properties of new
nodes only and fail silently. That is, if the path contains a state navigation step and the
stategroup is not in that state, the default won’t be applied. In the following
example the Score
property will not be set when the state of Default Score
is anything other than Known
.
'Score': number positive 'score' @default: .'Default Score'?'Known'.'Value'
A default value is not necessarily a valid value. If validation
rules or constraints apply, a default value can be invalid.
When a derived value is used, make sure it is not a part of the new
node. Derived values on new nodes are computed after the node is saved,
and will therefore not be included in default values.
For example, this initializes the Description
with Deliver pieces
:
'Description': text @default: concat ( "Deliver ", to-text .'To deliver', " pieces." )
'To deliver' : number 'pieces' = ^ >'Order'.'Amount'
Descriptions
All attribute types support the @description:
annotation.
This annotation adds additional information about an attribute: what it is meant for.
Alan GUI’s typically present it as alt text, or a compact description at an input field.
Visibility
Commands and attributes that hold derived values, support the @hidden
annotation.
The annotation hides an attribute from the UI.
Identifying properties
Properties that are important for the identification of a collection entry can be marked
with the @identifying
annotation. Identifying properties are shown together with the
unique identifier of a collection entry, whenever the entry is referenced.
For example, when an employee has a uniquely identifying personnel number
in a collection of employees, a reference to employee will show the name of the employee
when the ‘name’ property is marked as identifying.
'ui identifying property selection' {
'has properties': stategroup = node-switch .'properties' (
| nodes = 'yes' { 'first' = first }
| none = 'no'
)
'properties': [ (, ) ] dictionary {
'has successor': stategroup = node-switch successor (
| node = 'yes' { 'successor' = successor }
| none = 'no'
)
'type': [ : ] stategroup (
'text' { [ text ] }
'number' { [ number ] }
'group' { [ group ]
'selection': component 'ui identifying property selection'
}
'state group' { [ stategroup ]
'has identifying states': stategroup (
'no' { }
'yes' {
'identifying': stategroup (
'no' { [ hide ] }
'yes' { }
)
'first state': reference = first
'states': [ (, ) ] dictionary {
'has successor': stategroup = node-switch successor (
| node = 'yes' { 'successor' = successor }
| none = 'no'
)
'selection': component 'ui identifying property selection'
}
}
)
}
)
}
}
Icons
For better visual identification, attributes support the @icon:
annotation
attribute. As an argument it takes an icon name. A complete list of the
supported icons can be found at: fonts.google.com/icons.
Actions
'ui action attribute' {
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
}
An action attribute describes a sequence of actions (operations), as explained in the section on action attributes.
'ui action' { [ => ]
'expression': component 'ui expression'
'has next action': stategroup (
'yes' {
'action': component 'ui action'
}
'no' { }
)
}
The keyword interactive
instructs your application to display a screen to the user for applying/executing an operation.
'ui action interaction' {
'interactive': stategroup (
'yes' { [ interactive ] }
'no' { }
)
}
The keyword show
presents the result of an operation after performing it.
'ui action visualization' {
'show target': stategroup (
'yes' { [ show ] }
'no' { }
)
}
'ui object expression' {
'properties': [ (, ) ] dictionary {
'default': [ = ] component 'ui expression'
}
}
'ui entry expression list' {
'entry expression': component 'ui expression'
'more entries': stategroup (
'no' { }
'yes' { [ , ]
'tail': component 'ui entry expression list'
}
)
}
'ui expression' {
'operation': stategroup (
'state switch' { [ switch ]
'path': group {
'path': component 'ui parametrized node path'
'stategroup': [ . ] reference
}
'states': [ (, ) ] dictionary { [ | ]
'variable assignment': component 'optional variable assignment'
'expression': [ => ] component 'ui expression'
}
}
'node switch' { [ switch ]
'expression': component 'node expression'
'cases': [ (, ) ] group { dynamic-order
'node case': [ | node ] group {
'variable assignment': component 'optional variable assignment'
'expression': [ => ] component 'ui expression'
}
'none case': [ | none ] group {
'expression': [ => ] component 'ui expression'
}
}
}
'walk' { [ walk ]
'path': component 'singular node path'
'collection': [ . ] reference
'variable assignment': component 'optional variable assignment'
'expression': [ (, ) ] component 'ui expression'
}
'ignore' { [ ignore ] }
'update properties' { [ update ]
'path': component 'singular node path'
'target': stategroup (
'node' {
'interaction': component 'ui action interaction'
'visualization': component 'ui action visualization'
'expression': component 'ui object expression'
}
'collection' {
'collection': [ . ] reference
'expression': [ = ] component 'ui expression'
}
)
}
'execute operation' { [ execute ]
'interaction': component 'ui action interaction'
'path': component 'singular node path'
'operation': [ . ] reference
'expression': component 'ui object expression'
}
'produce value' {
'value': stategroup (
'object' {
'expression': component 'ui object expression'
}
'state' {
'state': [ create ] reference
'expression': component 'ui object expression'
}
'scalar' {
'expression': component 'ui scalar value expression'
}
)
}
'entry list' { [ (, ) ]
'entries': component 'ui entry expression list'
}
'entry' {
'type': stategroup (
'create' { [ create ]
'interaction': component 'ui action interaction'
'visualization': component 'ui action visualization'
'expression': component 'ui object expression'
}
'delete' { [ delete ]
'interaction': component 'ui action interaction'
'path': component 'singular node path'
}
)
}
)
}
'ui scalar value expression list' {
'value': component 'ui scalar value expression'
'has tail': stategroup (
'no' { }
'yes' { [ , ]
'tail': component 'ui scalar value expression list'
}
)
}
'ui scalar value expression' {
'type': stategroup (
'text' {
'type': stategroup (
'auto increment' { [ auto-increment ]
'scope': component 'ancestor node path'
}
'static' {
'value': text
}
'guid' { [ guid ] }
'number to text' { [ to-text ]
'numerical type': reference
'pad': stategroup (
'yes' { [ pad ]
'size': integer
'character': [ with ] text
}
'no' { }
)
'expression': component 'ui scalar value expression'
}
'concatenation' { [ concat (, ) ]
'list': component 'ui scalar value expression list'
}
)
}
'number' {
'type': stategroup (
'constant' {
'value': component 'constant number value'
}
'now in seconds' { [ now ] }
'unary expression' {
'type': stategroup (
'absolute value' { [ abs ] }
'numerical type conversion' { [ from ]
'representation based': stategroup (
'ui date and time' { [ @date-time ] }
'no' { }
)
'conversion': reference
}
'sign inversion' { [ - ] }
)
'expression': component 'ui scalar value expression'
}
'list expression' {
'operation': stategroup (
'sum' { [ sum ] }
'minimum' { [ min ] }
'maximum' { [ max ] }
'product' { [ product ] }
)
'value': [ (, ) ] component 'ui scalar value expression list'
}
'binary expression' {
'operation': stategroup (
'division' { [ division ]
'rounding': stategroup (
'ordinary' { }
'ceil' { [ ceil ] }
'floor' { [ floor ] }
)
}
'remainder' { [ remainder ] }
)
'expressions': group { [ (, ) ]
'left': component 'ui scalar value expression'
'right': [ , ] component 'ui scalar value expression'
}
}
)
}
'style' {
'type': stategroup (
'property' { [ to-color ]
'expression': component 'ui scalar value expression'
}
'fixed' {
'style': component 'ui style'
}
)
}
'state' {
'state': reference
}
'dynamic' {
'path': component 'ui parametrized node path'
'property': [ . ] reference
}
'sticky' { [ sticky ] }
)
}
'ui scalar default' {
'expression': component 'ui expression'
'has fallback': stategroup (
'yes' { [ || ]
'fallback': component 'ui scalar default'
}
'no' { }
)
}
'ui style' {
'style': stategroup (
'foreground' { [ foreground ] }
'background' { [ background ] }
'brand' { [ brand ] }
'link' { [ link ] }
'accent' { [ accent ] }
'success' { [ success ] }
'warning' { [ warning ] }
'error' { [ error ] }
)
}
'ui text validation' {
'regular expression': text
}
'ui parametrized node path' {
'path': component 'conditional node path'
}
'ui node path' {
'path': component 'node path'
}
'ui node path tail' {
'path': component 'node path tail'
}
'node type id' {
'steps': component 'node type id path'
}
'node type id path' {
'has steps': stategroup (
'no' { }
'yes' {
'property': [ . ] reference
'value type': stategroup (
'choice' {
'state': [ ? ] reference
}
'node' { }
'collection' { [ * ] }
)
'tail': component 'node type id path'
}
)
}
Commands
'ui command attribute' { dynamic-order
'visible': stategroup (
'true' { }
'false' { [ @hidden ] }
)
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
}
Groups
The @breakout
annotation indicates that a group property
should not be displayed together with the other properties. At the time of
this writing, the group is put in a separate tab in the details view of an entry.
Note that the tab is always added to the top level tabs of a details view.
That is, if a group is inside a state or another group, it is not added to the tabs of the state.
'ui group property' { dynamic-order
'visible': stategroup (
'true' {
'break out': stategroup (
'no' { }
'yes' { [ @breakout ] }
)
}
'false' { [ @hidden ] }
)
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
'icon': stategroup (
'no' { }
'yes' { [ @icon: ]
'name': text
}
)
}
Collections
The @default:
annotation copies entries of a source collection into the annotated collection.
A subset of the entries from the source collection can be copied by specifying a state filter:
'Labels': collection ['Name'] {
'Name': text
'Default': stategroup (
'Yes' { }
'No' { }
)
}
'Issues': collection ['Name'] {
'Name': text
'Labels': collection ['Name'] @default: >'Name'.'Default'?'Yes' {
'Name': text -> ^ ^ .'Labels'[]
}
}
This only applies to new nodes holding collections. This annotation does nothing for collections on the root node:
root {
'People': collection ['Name'] {
'Name': text
}
'Employees': collection ['Name'] @default: >'Name' { // This has no effect.
'Name': text
}
}
Collections can only be initialized from the collection that it references, using the key property, or using a derived link that derives from the key. In the latter case, other collections can be used to initialize an entry as long as the keys are the same.
'Imported Categories': collection ['Id'] {
'Id': text
}
'Gegevens': collection ['Id'] @default: >'Category' {
'Id': text /* -> some constraint or not */
'Category': text ~> ^ .'Imported Categories'[] = .'Id'
}
'ui collection property' { dynamic-order
'sort': stategroup (
'no' { }
'yes' {
'direction': stategroup (
'ascending' { [ @ascending: ] }
'descending' { [ @descending: ] }
)
'path': component 'ui node path'
'property': [ . ] reference
}
)
'visible': stategroup (
'true' {
'break out': stategroup (
'no' { }
'yes' { [ @breakout ] }
)
}
'false' { [ @hidden ] }
)
'size': stategroup (
'small' { [ @small ] }
'large' { }
)
'can be dormant': stategroup (
'no' { }
'yes' { [ @dormant: ]
'state group path': component 'descendant property path'
'dormant state': [ ? ] reference
}
)
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
'default': stategroup (
'no' { }
'yes' { [ @default: ]
'key reference': component 'entry reference selector'
'entry filter': component 'ui node path tail'
}
)
'icon': stategroup (
'no' { }
'yes' { [ @icon: ]
'name': text
}
)
'has style': stategroup (
'no' { }
'yes' { [ @style: ]
'style expression': component 'ui expression'
}
)
}
Numbers
'ui number property' { dynamic-order
'visible': stategroup (
'true' { }
'false' { [ @hidden ] }
)
'identifying': stategroup (
'no' { }
'yes' { [ @identifying ] }
)
'emphasis': stategroup (
'no' { }
'yes' { [ @emphasis ] }
)
'default': stategroup (
'no' { }
'yes' { [ @default: ]
'default': component 'ui scalar default'
}
)
'dynamic numerical type': stategroup (
'no' { }
'yes' { [ @numerical-type: ]
'binding path': component 'node path'
}
)
'metadata': stategroup (
'no' { }
'yes' { [ @metadata ] }
)
'validation': group {
'has minimum': stategroup (
'no' { }
'yes' { [ @min: ]
'minimum': component 'ui scalar value expression'
}
)
'has maximum': stategroup (
'no' { }
'yes' { [ @max: ]
'maximum': component 'ui scalar value expression'
}
)
}
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
'icon': stategroup (
'no' { }
'yes' { [ @icon: ]
'name': text
}
)
}
Files
'ui file property' { dynamic-order
'file name expression': stategroup (
'no' { }
'yes' { [ @name: ]
'file name expression': component 'ui scalar default'
}
)
'visible': stategroup (
'true' { }
'false' { [ @hidden ] }
)
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
'icon': stategroup (
'no' { }
'yes' { [ @icon: ]
'name': text
}
)
'identifying': stategroup (
'no' { }
'yes' { [ @identifying ] }
)
}
Texts
'ui text property' { dynamic-order
'visible': stategroup (
'true' { }
'false' { [ @hidden ] }
)
'identifying': stategroup (
'no' { }
'yes' { [ @identifying ] }
)
'emphasis': stategroup (
'no' { }
'yes' { [ @emphasis ] }
)
'type': stategroup (
'default' { }
'multi-line' { [ @multi-line ] }
'color' { [ @color ] }
)
'default value': stategroup (
'no' { }
'yes' { [ @default: ]
'default': component 'ui scalar default'
}
)
'has validation': stategroup (
'no' { }
'yes' { [ @validate: ]
'type': stategroup (
'regular expression' {
'rules': component 'ui text validation'
}
'optional reference must resolve' { [ resolvable ] }
)
}
)
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
'icon': stategroup (
'no' { }
'yes' { [ @icon: ]
'name': text
}
)
'has custom identifying properties': stategroup (
'no' { }
'yes' { [ @show: ]
'selection': component 'ui identifying property selection'
}
)
'is label': stategroup (
'no' { }
'yes' { [ @label ] }
)
}
State groups
'ui state group property' { dynamic-order
'visible': stategroup (
'true' { }
'false' { [ @hidden ] }
)
'identifying': stategroup (
'no' { }
'yes' { [ @identifying ] }
)
'emphasis': stategroup (
'no' { }
'yes' { [ @emphasis ] }
)
'default state': stategroup (
'no' { }
'yes' { [ @default: ]
'default': component 'ui scalar default'
}
)
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
'icon': stategroup (
'no' { }
'yes' { [ @icon: ]
'name': text
}
)
}
States
'ui state' { dynamic-order
'desired state': stategroup (
'no' { }
'yes' { [ @desired ] }
)
'verified state': stategroup (
'no' { }
'yes' { [ @verified ] }
)
'icon': stategroup (
'no' { }
'yes' { [ @icon: ]
'name': text
}
)
'has style': stategroup (
'no' { }
'yes' { [ @style: ]
'style expression': component 'ui expression'
}
)
'transitions': dictionary { [ @transition: ]
'action': [ => execute ] reference
}
}
Todo items
'ui todo' {
'has description': stategroup (
'no' { }
'yes' { [ @description: ]
'description': text
}
)
}
Numerical types
'ui numerical type' {
'represent as': stategroup (
'model' { }
'date' { [ @date ] }
'date and time' { [ @date-time ] }
'duration' { [ @duration: ]
'unit': stategroup (
'seconds' { [ seconds ] }
'minutes' { [ minutes ] }
'hours' { [ hours ] }
)
}
'custom type' { [ @numerical-type: ]
'binding': stategroup (
'root' { }
'dynamic' { [ bind ]
'path': component 'node type id'
'assignment': [ as ] component 'variable assignment'
}
)
'properties': [ (, ) ] group {
'label': [ label: ] component 'ui scalar value expression'
'conversion': stategroup (
'none' { }
'point translation' {
'decimals': [ decimals: ] component 'ui scalar value expression'
}
)
}
}
)
}